
Arm Debugger: Attach or Up
Choose the correct debug scenario

Alex Merkle, Lauterbach Engineering GmbH & Co. KG
February 01, 2022

AGENDA

1. Preface

2. Example U-Boot

3 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

Motivation

TRACE32 offers multiple commands to establish a connection to a target platform
Goal of this document is to help choosing the correct approach for the use case
Within this document we will use the terms Attach and Up scenarios
The essential difference at a glance

Attach scenarios establish the debug connection but do not reset/restart the target platform
Up scenarios will reset/restart the target platform before establishing the debug connection

This document will mainly put focus on Up scenarios

4 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

Terms

Throughout this document the following TERMs are used (aligned with ARM TF-A)
bl1 1st bootloader, ROM, loads secondary bootloader bl2 from external media
bl2 2nd bootloader, RAM, may load multiple next stage bootloaders (bl31/bl32/bl33/...)
bl31 runtime firmware, RAM, keeps running in Monitor mode and offers firmware functionalities

e.g. PSCI, SPD, ...
bl32 trusted OS, RAM, OS running in secure zone e.g. OP-Tee
bl33 nonsecure bootloader, RAM, typically u-boot, fastboot, coreboot bootloader offering first

interactive shell
OS rich OS, RAM, e.g. Linux/Qnx/VxWorks or hypervisor Xen/L4Re/Qnx/Coqos

5 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

typical TF-A bootflow

ZS:
M:
H:

NS:
ZS:
M:
H:

NS:

bl1 bl2 bl31
bl32
bl31

bl32
bl31
bl33

bl32
bl31
"OS"

Core
1

Core
2..n

See also https://www.lauterbach.com/projects_download/
training_manuals/arm_trustzone.pdf for the meaning of access-classes
ZS:/M:/H:/NS:.
Legend: Reset/Core start Code alive, executing Code alive, inactive

https://www.lauterbach.com/projects_download/training_manuals/arm_trustzone.pdf
https://www.lauterbach.com/projects_download/training_manuals/arm_trustzone.pdf

5 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

typical TF-A bootflow

ZS:
M:
H:

NS:
ZS:
M:
H:

NS:

bl1 bl2 bl31
bl32
bl31

bl32
bl31
bl33

bl32
bl31
"OS"

Core
1

Core
2..n

Up
scenario

Attach
scenario

5 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

typical TF-A bootflow

ZS:
M:
H:

NS:
ZS:
M:
H:

NS:

bl1 bl2 bl31
bl32
bl31

bl32
bl31
bl33

bl32
bl31
"OS"

Core
1

Core
2..n

Up
scenario

Attach
scenario

stricter
timing

requirements

6 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

ideal SYStem.Mode Up

TRACE32 assumes that communication with the target platform can take place with
nSRST/nReset line asserted
TRACE32 can stop the core as soon as it starts

script.cmm
RESet
SYStem.CPU <>
SYStem.Option NoPRCRReset ON

[CORE.ASSIGN <1.|2.>]
SYStem.Up

reset debug

nSRST

nTRST

CPU State JTAG ID DAP register stop

JTAG
OK

Power
OK

Register
OK

The more complex the target becomes this approach will not succeed anymore.

7 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

relaxed SYStem.Mode Up

TRACE32 offers diverse SYStem.Option’s to relax the SYStem.Mode Up behavior
SYStem.Option ResBreak OFF will force TRACE32 not to communicate with the target
platform with nSRST/nReset asserted
⇒ Target platform will boot for some time

script.cmm
RESet
SYStem.CPU <>
SYStem.Option ResBreak OFF
SYStem.Option NoPRCRReset ON

[CORE.ASSIGN <1.|2.>]
SYStem.Up

nSRST

nTRST

CPU State reset running debugJTAG ID DAP register stop

JTAG
OK

Power
OK

Register
OK

8 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

WaitReset
RESet
SYStem.CPU <>
SYStem.Option ResBreak OFF
SYStem.Option WaitReset <time>

SYStem.Option NoPRCRReset ON
[CORE.ASSIGN <1.|2.>]
SYStem.Up

IDCODE/DAPPWR/DBGREG
RESet
SYStem.CPU <>
SYStem.Option ResBreak OFF
SYStem.Option WaitIDCODE <time>
SYStem.Option WaitDAPPWR <time>
SYStem.Option WaitDBGREG <time>
SYStem.Option NoPRCRReset ON

[CORE.ASSIGN <1.|2.>]
SYStem.Up

SoC specific
RESet
SYStem.CPU <>

???

[CORE.ASSIGN <1.|2.>]
SYStem.Up

More information can be found in TRACE32: Help → Processor Architecture Manual
ARMv8: ~~/pdf/debugger_armv8v9.pdf chapter Configure Debugger for SoC Specific
Reset Behavior
Example scripts: ~~/demo/arm/hardware/... or TRACE32: File → Search for Script
Complicated? Yes, SoC internal security, power-management, reset circuitry, ... implications
become visible to the end-user

9 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

Causality

In order to debug a specific bootstage we need to connect before this stage begins

Example: in order to debug bootloader bl2 we need to connect before it starts
Referring to our example it’s enough as long as we stop while bl1 stage (ROM), thus a short
target boot time (buzzword ResBreak OFF) is okay
Causality can be relaxed e.g. by putting a busy waiting loop into the bootloader

ZS:
M:
H:

NS:
ZS:
M:
H:

NS:

bl1 bl2 bl31
bl32
bl31

bl32
bl31
bl33

bl32
bl31
"OS"

Core
1

Core
2..n

9 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

Causality

In order to debug a specific bootstage we need to connect before this stage begins
Example: in order to debug bootloader bl2 we need to connect before it starts

Referring to our example it’s enough as long as we stop while bl1 stage (ROM), thus a short
target boot time (buzzword ResBreak OFF) is okay
Causality can be relaxed e.g. by putting a busy waiting loop into the bootloader

ZS:
M:
H:

NS:
ZS:
M:
H:

NS:

bl1 bl2 bl31
bl32
bl31

bl32
bl31
bl33

bl32
bl31
"OS"

Core
1

Core
2..n

9 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

Causality

In order to debug a specific bootstage we need to connect before this stage begins
Example: in order to debug bootloader bl2 we need to connect before it starts
Referring to our example it’s enough as long as we stop while bl1 stage (ROM), thus a short
target boot time (buzzword ResBreak OFF) is okay

Causality can be relaxed e.g. by putting a busy waiting loop into the bootloader

ZS:
M:
H:

NS:
ZS:
M:
H:

NS:

bl1 bl2 bl31
bl32
bl31

bl32
bl31
bl33

bl32
bl31
"OS"

Core
1

Core
2..n

requirement

9 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

Causality

In order to debug a specific bootstage we need to connect before this stage begins
Example: in order to debug bootloader bl2 we need to connect before it starts
Referring to our example it’s enough as long as we stop while bl1 stage (ROM), thus a short
target boot time (buzzword ResBreak OFF) is okay
Causality can be relaxed e.g. by putting a busy waiting loop into the bootloader

ZS:
M:
H:

NS:
ZS:
M:
H:

NS:

bl1 bl2 bl31
bl32
bl31

bl32
bl31
bl33

bl32
bl31
"OS"

Core
1

Core
2..n

requirement

10 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

CORE.ASSIGN

Syntax: CORE.ASSIGN <> [<>, [...]]

Conditions: only available and required if the selected SYStem.CPU <> selects a multicore
cluster e.g. 8x Cortex-A55
CORE.ASSIGN allows to select physical cores of the multicore cluster and merges them into
one SMP system

CORE.ASSIGN 3. selects physical core 3
CORE.ASSIGN 1. 2. 3. selects physical cores 1 2 3 as one SMP system

assigned cores become logical cores in the debug session
CORE.ASSIGN 2. 4. 6. 8. physical numbering 1 ≤ x ≤ corenumber
CORE.select 0. 1. 2. 3. logical numbering 0 ≤ x ...

Rule of thumb: Key for success not only when debugging boot-scenarios, assign only cores
which are up and running
Reason: accessing unpowered/unclocked resources from the debug logic might trigger
unrecoverable errors, highly target platform specific behavior

11 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

CORE.ASSIGN

Rule of thumb: Key for success not only when debugging boot-scenarios, assign only cores which
are up and running

ZS:
M:
H:

NS:
ZS:
M:
H:

NS:

bl1 bl2 bl31
bl32
bl31

bl32
bl31
bl33

bl32
bl31
"OS"

Core
1

Core
2..n

CORE.ASSIGN
1.

CORE.ASSIGN
1. 2. ...

12 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

CORE.ASSIGN

Homogeneous Multicore

All cores use the same core architecture
and type
CORE.ASSIGN is linear indexed

Heterogeneous Multicore

Cores use the same architecture but
different types
CORE.ASSIGN is tick/tock indexed
ARM big.LITTLE, DynamIQ

Bootcore is most likely
CORE.ASSIGN 1.

Bootcore is either
CORE.ASSIGN 1.

or
CORE.ASSIGN 2.

⇒ Check example scripts ~~/demo/arm/hardware/...
Correct setting may depend on BOOTMODE lines or BOOTIMAGE, target platform specific!

13 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

Breakpoints

use ONCHIP Breakpoints to stop at every entry point of a new bootloader stage
starting from the entry point, software breakpoints may be used within that bootloader stage
Why ONCHIP breakpoints?

Task of a bootloader is to load the code for the next bootstages
⇒ software breakpoints set in the next bootstages may get overwritten by the current bootloader
stage
Task of a bootloader is to initialize hardware e.g. DRAM
⇒ software breakpoints can’t be set into untrained DRAM

Syntax: Break.Set <address|symbol> /Onchip

Further ONCHIP Breakpoint like features available - Onchip Triggers or ARM ETM

14 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

Code Breakpoints

Core logic - single address
Break.Set 0x80080000 /Program /Onchip
Break.Set _head /Program /Onchip
Break.Set sYmbol.SECADDRESS(.head.text) /Program /Onchip

See also: ~~/pdf/debugger_armv8v9.pdf - Breakpoints

ETM logic - address range [optional]
ETM.StoppingBreakpoints ON
Break.Set <range> /Program /Onchip
Break.Set 0x80000000++0x0fffffff /Program /Onchip

Onchip Triggers - exception level
TrOnchip.Set <NSEL1|NSEL2|SEL3|SEL1> <OFF|ON> ; trigger as soon as CPU enters a specific mode
TrOnchip.Set NSEL1 ON ; trigger as soon as CPU enters NonSecure EL1
; may be also read as Break.Set NS:0x0--0xffffffffffffffff /Program /Onchip

Reminder: All those address comparisons use virtual addresses.

1. Preface

2. Example U-Boot

16 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

Scenario: Connect in u-boot shell
Use cases:

debug u-boot command
load/patch OS code using TRACE32
debug OS boot
remote control of u-boot shell

Can be solved as a Attach and Up scenario.

ZS:
M:
H:

NS:
ZS:
M:
H:

NS:

bl1 bl2 bl31
bl32
bl31

bl32
bl31
bl33

bl32
bl31
"OS"

Core
1

Core
2..n

17 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

Manual Attach

connect serial terminal e.g. PUTTY/minicom
press reset button/power cycle platform
as soon as terminal string shows up, invoke
DO script

in TRACE32
script.cmm:

1. reset settings of TRACE32
2. configure TRACE32 for target platform
3. connect and stop

script.cmm
RESet

SYStem.CPU <>
[CORE.ASSIGN <1.|2.>]

SYStem.Mode Attach
Break

1.

2.

3.

18 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

TERM.TRIGGER

script.cmm:
1. reset settings of TRACE32
2. configure TRACE32 for target platform
3. ensure disconnect
4. connect terminal/serial console
5. setup trigger for string Hit any key

RESET target platform (assert nReset line)
6. stop as soon as string appears in terminal

⇒ an Up scenario without SYStem.Mode Up

script.cmm
RESet

SYStem.CPU <>
[CORE.ASSIGN <1.|2.>]

SYStem.Down

TERM.METHOD #1 COM
TERM.view

TERM.TRIGGER #1 "Hit any key"
SYStem.ResetOut

SCREEN.WAIT TERM.TRIGGERED(#1)
SYStem.Mode Attach
Break

1.

2.

3.

4.

5.

6.

19 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

Using Symbols

script.cmm:
1. reset settings of TRACE32
2. configure TRACE32 for target platform
3. use SYStem.Mode Up
4. load debug symbols only
5. wait till temporary onchip breakpoint on start

symbol of bootloader triggers
6. wait till temporary breakpoint in relocation

procedure triggers
7. let bootloader perform relocation
8. wait till temporary breakpoint on key-press check

triggers

script.cmm
RESet

SYStem.CPU <>
[CORE.ASSIGN <1.|2.>]
[SYStem.Option ...]
SYStem.Up

[Break.CONFIG MATCHZONE ON]
Data.LOAD.Elf u-boot /NoCODE

Go __image_copy_start /Onchip /Program
WAIT !STATE.RUN()

Go relocate_done
WAIT !STATE.RUN()

Go.Up
WAIT !STATE.RUN()

DO ~~/demo/<arch>/bootloader/uboot/
load_uboot_symbols_reloc.cmm

Go tstc
WAIT !STATE.RUN()

1.

2.

3.

4.

5.

6.

7.

8.

20 / 22

A
rm

D
eb

ug
ge

r:
At

ta
ch

or
U

p

Using Symbols

script.cmm:
1. reset settings of TRACE32
2. configure TRACE32 for target platform
3. use SYStem.Mode Up
4. load debug symbols only
5. wait till cpu enters NonSecure EL2
6. wait till temporary breakpoint in relocation

procedure triggers
7. let bootloader perform relocation
8. wait till temporary breakpoint on key-press check

triggers

script.cmm
RESet

SYStem.CPU <>
[CORE.ASSIGN <1.|2.>]
[SYStem.Option ...]
SYStem.Up

Data.LOAD.Elf u-boot /NoCODE

TrOnchip.Set NSEL2 ON
Go
WAIT !STATE.RUN()
TrOnchip.Set NSEL2 OFF

Go relocate_done
WAIT !STATE.RUN()

Go.Up
WAIT !STATE.RUN()

DO ~~/demo/<arch>/bootloader/uboot/
load_uboot_symbols_reloc.cmm

Go tstc
WAIT !STATE.RUN()

1.

2.

3.

4.

5.

6.

7.

8.

Questions?

Thank You!

Arm Debugger: Attach or Up

	Preface
	Example U-Boot

